エンタープライズ ソリューション カンファレンス ~IT Technical Seminar V15~ (2014)

SDNフレームワークの解説と、 OpenFlowコントローラのプログラミング および実演

> 2014年6月20日 株式会社オープントーン 金融ソリューション事業部 菱野孝史

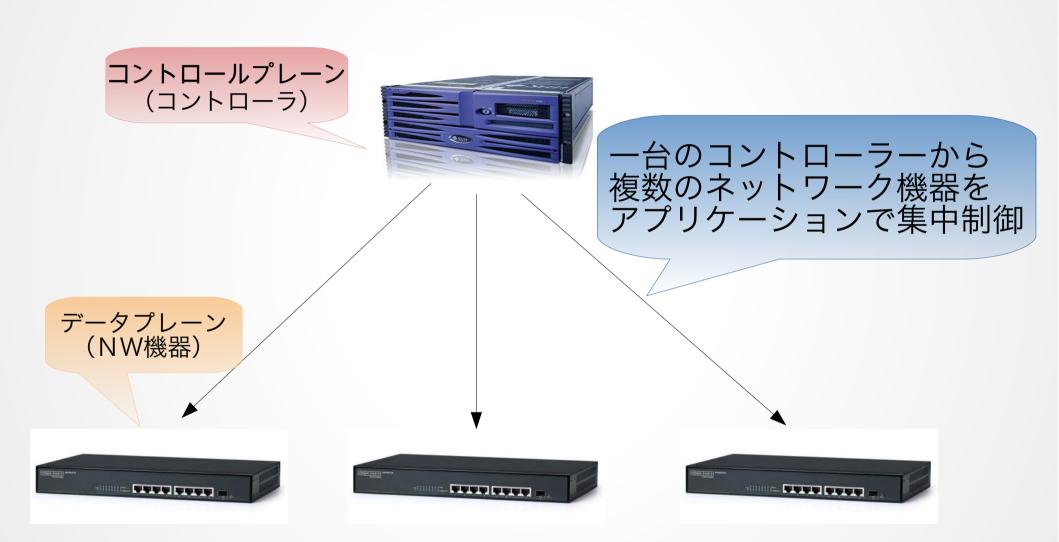
アジェンダ

- 第一部
 - SDN/OpenFlowとは
 - OpenFlowの仕組み
 - OpenFlowによるパケット転送の流れ
- 第二部
 - OpenFlowのアプリを作るには
 - OpenDaylight
 - FrameWorkとしてのOpenDaylight
- 第三部
 - 実演

SDNとは・・・ググってみると

T ネットワークの構成、機能、性能などをソフトウェアの操作だけで動的に 設定、変更できるネットワーク、あるいはそのためのコンセプトを指す

ネットワークを構成する通信機器などをソフトウェアで一括して制御する 『Trommunications ことで、利用者の目的に応じてネットワークの構造、構成、設定などを柔 軟に変更できる技術の総称



個々のネットワーク機器にそれぞれコンフィグレーションするのではな く、各装置を集めたネットワーク全体を一つの単位として、一括で制御す るという考え方

SDNとは・・・つまり

- ソフトウェアを用いてネットワーク機器を動的 に制御する技術。
- ネットワーク機器の機能を「コントロールプレーン」と「データプレーン」に分離。
- コントロールプレーンの機能を「コントロール レイヤ」として一元化することにより、複数の ネットワークデバイスを集中的に制御する。

SDNとは・・・つまり

SDNは何がイイのか?

- ネットワーク全体を俯瞰しながらVLANの設定ができる。ようになりそう。
- ネットワーク機器の制御を比較的自由にカスタマイズできるため、ネットワークの効率的な利用ができるようになるかも知れない。
- Oracleなど、各社からSDN対応機器が出てき そう。⇒主にネットワークの仮想化にSDN技術 を用いる方向のよう。

それでは、OpenFlowとは?

- SDNにおけるネットワーク機器の制御プロトコル
- ネットワーク機器の外部にあるコントローラから、プログラムによってパケットの制御をすることができる。
- 複数のネットワーク機器を1つのコントローラから集中的に制御することができる。
- プロトコルの範囲内で、比較的自由なパケット 制御(フロー制御)ができる。

- 通信トラフィックは「フローエントリ」という 形で扱う。
 - フローエントリは次の3つのフィールドを持っている。
 - ヘッダフィールド
 - OpenFlowスイッチが受信したトラフィックの要素を格納
 - トラフィックの制御に使用する
 - カウンタ
 - 発生/処理したトラフィックをヘッダフィールドの要素ごとに集 計した値
 - アクション
 - トラフィックに対する処理を定義する

トラフィックの制御はヘッダフィールドとアクションで実施する

• ヘッダフィールドの要素

フィールド	意味
Ingress Port	トラフィックの入力ポート番号
Ethernet source address	トラフィックの送信元MACアドレス
Ethernet destination address	トラフィックの宛先MACアドレス
Ethernet type	Ethernetの種類
VLAN id	VLAN ID
VLAN priority	VLAN PCP(Priority Code Point)
IP source address	送信元IPアドレス
IP destination address	宛先IPアドレス
IP protocol	トランスポート層のプロトコル種別
IP ToS bits	ToS(Type of Service) (優先度)
Transport source port / ICMP Type	送信元ポート番号
Transport destination port / ICMP Code	宛先ポート番号

• アクション

フィールド	意味
Forward	パケットを物理ポートおよび仮想ポートへ転送する
Enqueue	ポートに設定されたqueueを通してパケットを転送する queueの設定によってQoSを実現できる
Drop	パケットを転送せずに破棄する
Modify-Field	パケットの特定のフィールドを書き換える

OpenFlowのプロトコル

コントローラとスイッチ間でやり取りする メッセージ

コントローラ⇒スイッチ		スイッチ⇒コントローラ	
メッセージ	内容	メッセージ	内容
Modify-State	スイッチのフローテーブルに フローの追加削除修正を行う ※フローにはヘッダフィール ドのマッチングルールとアク ションが格納される	Packet-in	スイッチがパケットを受信 した際にコントローラへ通 知するメッセージ コントローラは、受け取っ たメッセージを解析して処 理を決定する
Send-Packet	指定されたポートからパケットを送出するようにスイッチ に指示を出す	Port-status	Read-Stateに対して、統計 情報を返却する
Read-State	フローテーブルやポートなど の統計情報を取得する		

OpenFlowでのパケット転送の 流れ

①ヘッダフィールドの要素ごとにマッチングルールを規定

マッチングルール 1

フィールド	設定値
Ingress Port	1
Ethernet source address	00:11:11:11:11
Ethernet destination address	00:22:22:22:22
VLAN id	1

マッチングルール2

フィールド	設定値
Ingress Port	2
Ethernet source address	00:33:11:11:11
Ethernet destination address	00:33:22:22:22
VLAN id	2

OpenFlowでのパケット転送の 流れ

②マッチングルールにアクションを規定

```
マッチングルール アクション
マッチングルール1 パケットはポート3から転送
マッチングルール2 パケットはポート4から転送
```

OpenFlowでのパケット転送の 流れ

•スイッチの動作

SDN/OpenFlowのアプリを 作るには

• いくつかOpenFlowに対応したFrameWorkが出てきています。

- NOX(C++)
- POX(Python)
- Ryu SDN FrameWork(Python)
- Floodlight(Java)
- Trema(Ruby)
- OpenDaylight(Java)

Floodlight

OpenDaylight

- Linux Foundationの下でのオープンソースソフトウェアプロジェクト。
- SDNフレームワークであると同時に、SDN管理機能を持っている。
- OSGiを用いて開発されたSDNコントローラの 管理も可能。

OpenDaylightとは

"HYDROGEN"

VTN: Virtual Tenant Network

oDMC: Open Dove Management Console

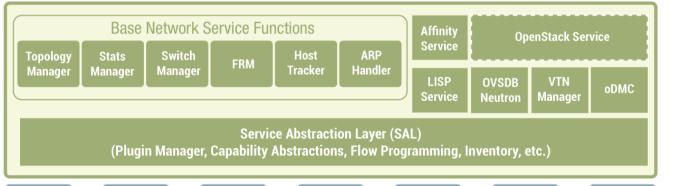
D4A: Defense4All Protection

LISP: Locator/Identifier Separation Protocol OVSDB: Open vSwitch DataBase Protocol

BGP: Border Gateway Protocol

PCEP: Path Computation Element Communication Protocol

SNMP: Simple Network Management Protocol


FRM: Forwarding Rules Manager ARP: Address Resolution Protocol

Management GUI/CLI

VTN Coordinator D4A Protection OpenStack Neutron

Network Applications
Orchestrations & Services

OpenDaylight APIs (REST)

Controller Platform

OpenFlow 1.0 1.3

OVSDB

NETCONF

LISP

BGP

PCEP

SNMP

Southbound Interfaces & Protocol Plugins

OpenFlow Enabled Devices

Open vSwitches

Additional Virtual & Physical Devices

Data Plane Elements (Virtual Switches, Physical Device Interfaces)

OpenDaylightで何ができるのか

- OpenDaylight対応機器で構成されたネット ワークの全体を管理することが可能。
- OpenDaylight自身にフローコントロールの機能が実装されており、パケットの制御をカスタマイズできる。
- OpenFlowに対応しており、OpenFlowの FrameWorkとして利用可能。

FrameWorkとしての OpenDaylight

- Base Network Service Function
 - Java Class

バンドル	API	説明
arphandler	lHostFinder	ARPを処理してホストの場所を学習 する
hosttracker	IflptoHost	SDN上でホストの相対的な場所を追 跡する
switchmanager	ISwitchManager	コントローラ内のすべてのスイッチ のインベントリを保持する
topologymanager	lTopologyManager	ネットワーク全体のトポロジを保持 する
usermanager	lUserManager	ユーザ管理を担う
statisticsmanager	IStatisticsManager	IReadServiceを利用して統計情報を 収集する

FrameWorkとしての OpenDaylight

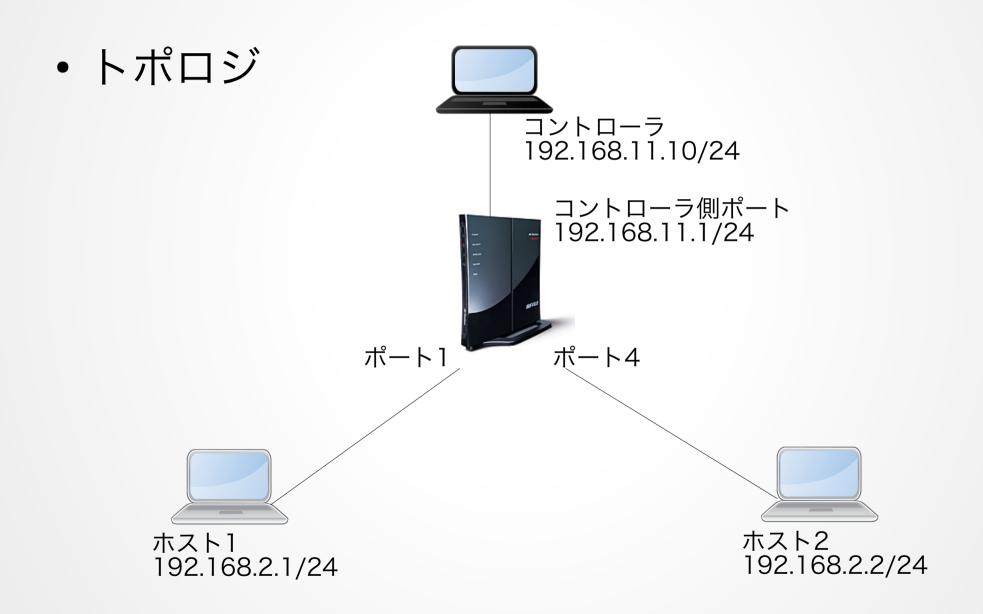
- Service Abstraction Layer
 - Java Class

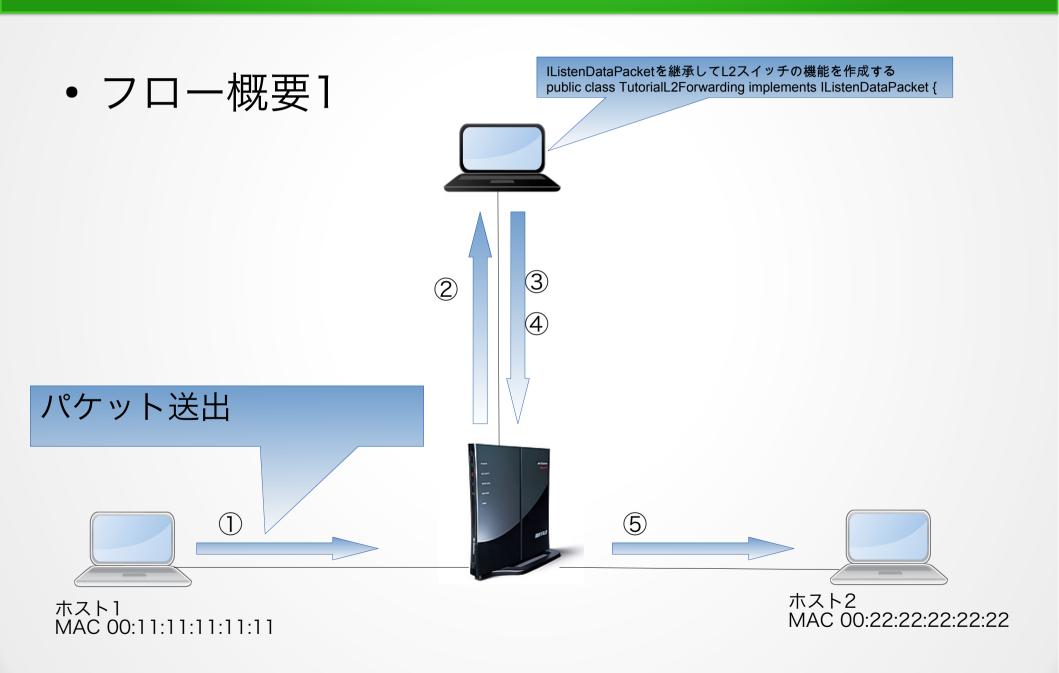
バンドル	API	説明
sal	IReadService	スイッチのフロー/ポート/キューの ビューを取得する
sal	lTopologyService	トポロジメソッド
sal	IFlowProgrammerS ervice	スイッチに対してフローエントリの 追加更新削除を行う
sal	IDataPacketService	パケットデコード等、パケット操作 を行う
sal	IListenDataPacket	パケット処理のためのクラス このクラスを継承してコントローラ クラスを作成する
web	IStatisticsManager	システムにインストールされている バンドルをUIから管理する

FrameWorkとしての OpenDaylight

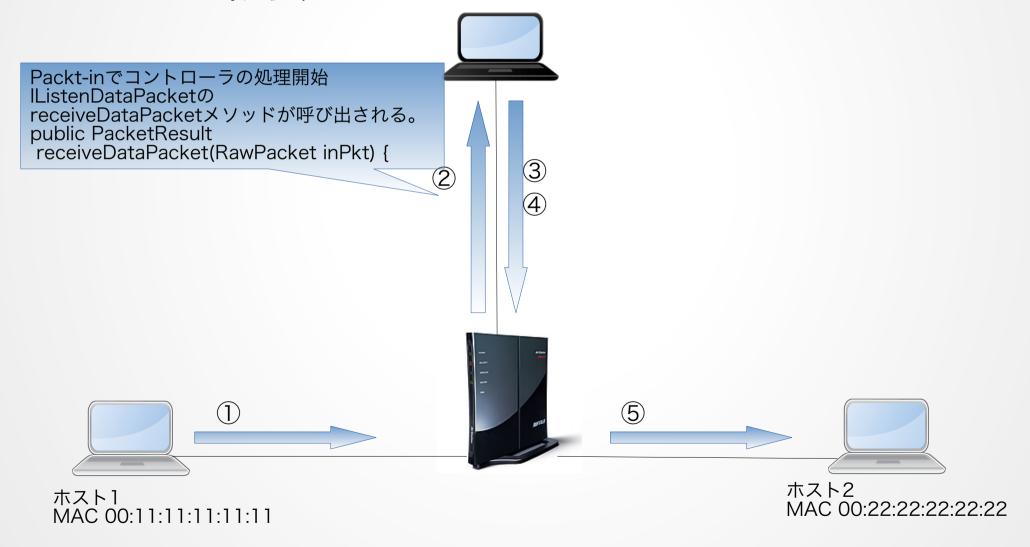
- Service Abstraction Layer
 - JavaのClass

バンドル	Class	説明
sal	Action	OpenFlowのアクション
sal	Match	OpenFlowのマッチ
sal	IFlowProgrammerS ervice	スイッチに対してフローエントリの 追加更新削除を行う
sal	IDataPacketService	パケット操作のためのサービス OpenFlowのForwardアクションを 発行する
web	IStatisticsManager	システムにインストールされている バンドルをUIから管理する

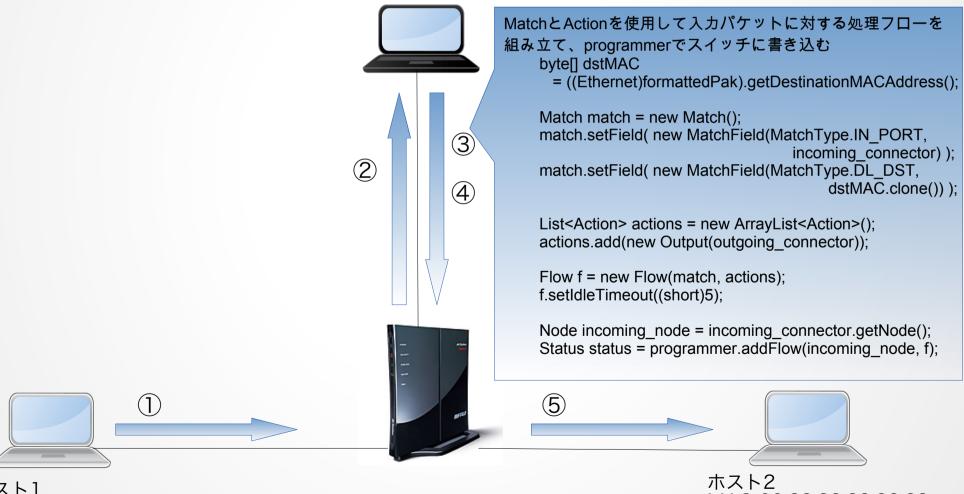

開発・テストツール


- OpenDaylight
- OpenWrt
- サンプルコントローラ https://github.com/sdnhub/SDNHub_Opendaylight_Tutorial

OpenWrt

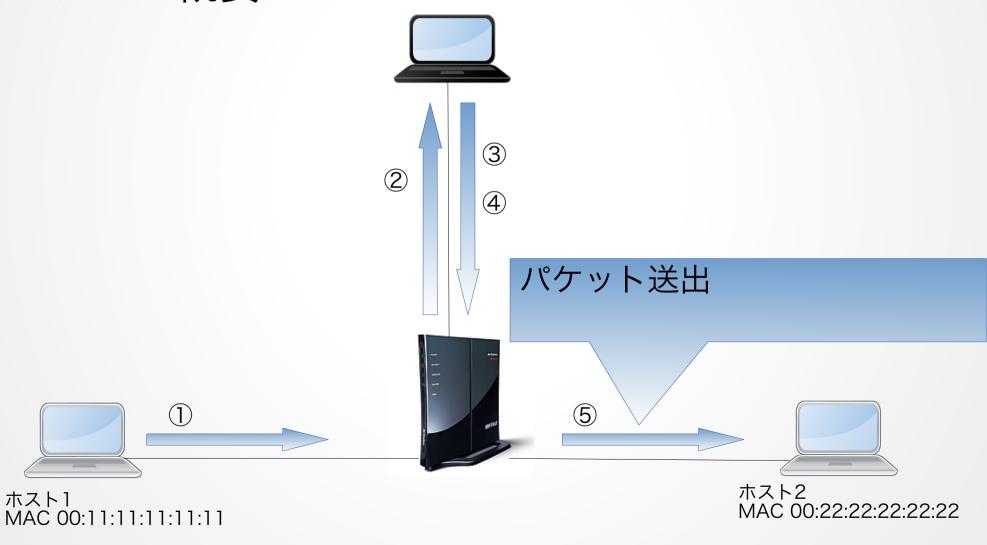

- 組み込みデバイス向けのLinuxディストリビューション
- 一部の安価な無線LANルータを動かすことができる。
- OpenWrt向けのOpenFlowがある。 以下のサイトで入手可能。 http://openflow.inthebox.info

- 環境
 - OpenFlowコントローラ
 - CentOS 6.5 (Virtual Box 4.3上で動作)
 - OpenDaylight Hydrogen
 - テストルータ
 - BUFFALO WHR-G301N
 - OpenWrt
 - OpenFlow 1.0



• フロー概要2

• フロー概要3



ホスト1 MAC 00:11:11:11:11:11 MAC 00:22:22:22:22

• フロー概要4

• フロー概要5

終わりに

本セミナーで実演した内容など、SDN/OpenFlow/OpenDaylightに関する記事は、随時弊社ブログに掲載していきます。 ご興味のある方は是非ご覧願います。

ご興味のある方は是非ご覧願います。 http://labs.opentone.co.jp

エンタープライズ ソリューション カンファレンス ~IT Technical Seminar V15~ (2014)

ご静聴、ありがとうございました。